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Residual entropy of ice: a manifestation of the fractional
exclusion statistics in real three-dimensional space
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Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul,
Korea

Received 11 July 1995

Abstract. We report here a tangible example of the fractional exclusion statistics in three
spatial dimensions. We identify the chemical constraint of O–H bonds in ice, the so-called
ice rule, as the origin of this novel statistics. Then the residual entropy of the crystalline ice
is recognized as arising from the fractional exclusion with the statistical interaction parameter
α = 0.867. Assuming the residual entropy of ice reflects true accessibility to a macroscopic
number of states through quantum tunnelling, we propose the possibility that Berry’s phase
suppresses the tunnelling splitting of ground states and maintains the finite residual entropy.

Recently, Haldane [1] reformulated the concept of the fractional statistics as a generalization
of the Pauli exclusion principle so that the fractional statistics is realizable in arbitrary spatial
dimensions. Under such a generalization, the fractional statistics has been identified, beyond
the well known case of the quasiparticles or holes in the fractional quantum Hall effect in
two dimensions [2], and in some one-dimensional model systems [3, 4] as well. Needless
to say, the most desired example of this new statistics (now called the ‘fractional exclusion
statistics’) has been its realization in three or higher spatial dimensions, which would
unambiguously establish the generality of the fractional exclusion statistics in comparison
with the anyon (fractional phase) statistics restricted to two dimensions. In this letter, we
would like to report a manifestation of the fractional exclusion statistics in the ordinary
crystalline ice, the first example of such statistics in the real three-dimensional world to
our knowledge. In ice, each hydrogen atom can occupy one of two equivalent bonding
sites between the neighbouring oxygen atoms. However, because of the chemical constraint
known as the ice rule to be explained below, the number of allowed configurations is reduced
and this reduction will be shown to be describable as the fractional statistics interpolating
between the bosonic and fermionic statistics. We will further suggest that there exist
similarities, on the fundamental level of physics, between the apparently chemistry-driven
statistics presented here and the conventional topology-driven fractional statistics.

The stable structure of ice at low temperatures is known to be hexagonal and each oxygen
atom is surrounded by four nearest-neighbour oxygen atoms as shown in figure 1(a). There
are two chemical constraints for the hydrogenic configurations, namely, (i) that there is
one hydrogen atom between any pair of neighbouring oxygen atoms, and (ii) that there are
two hydrogen atoms near to (and two hydrogen atoms away from) a given oxygen atom.
Consequently, the local configuration around an oxygen atom in ice is H2O-molecule-like.
For convenience of presentation, we assume that the first constraint is already satisfied by
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Figure 1. (a) Schematic drawing of the structure of the hexagonal ice. Full circles indicate
hydrogen atoms. An oxygen atom (not marked) exists at each of eight vertices. Full lines indicate
strong O–H covalent bonds and the broken lines weak hydrogen bonds. With other hydrogen
atoms residing outside the area shown, the ice rule is always satisfied. (b) and (c) are obtained
from configurations (a) and (b), respectively, by shifting six hydrogen atoms simultaneously
through the tunnel barrier in the arrow directions keeping all outside atoms fixed. Likewise, the
configuration (a) may be obtained from (c). Simultaneous rotation of six O–H covalent bonds
by about 105◦, respectively, is another possible path to arrive at the configuration (b) from (a).

the stoichiometric (H2O) ice (violation of which would cost too much energy), and we
will from now on call the second constraint the ice rule. In general, a hydrogen atom
located between oxygen atoms I and II can occupy either one of two equilibrium sites, one
near to atom I (site A) and the other near to atom II (site B). Therefore, before the ice
rule is imposed, the total number of possible hydrogenic configurations is 22N , whereN

is the number of oxygen atoms which sets the system size. It was a famous problem in
statistical mechanics to count the number of different configurations satisfying the ice rule
in the thermodynamic (large-N ) limit, and the answer [5] turned out to be∼1.507N . On the
other hand, it has been known in specific heat (Cp) measurements [6–8] that the crystalline
ice exhibits a residual (zero-point) entropy of∼0.82 cal/mol·K down to the temperature
T ≈ 0.2K. Since the state degeneracy of 1.507N is equivalent to 0.815 cal/mol·K in terms
of entropy, there exists an excellent agreement between theory and experiment.

Now we can map the statistics of the hydrogenic configuration under the ice rule onto
the fractional exclusion statistics. The situation of the maximal degeneracy (22N ) in the
absence of the ice rule is mapped to the bosonic statistics, complete vanishing of the
configurational degrees of freedom to the fermionic statistics, and the intermediate (realistic)
case to the fractional statistics. Following Wu’s formalism [9], if there areNp identical
particles occupyingG one-particle states of identical energy, the number ofNp-particle
states (i.e. the degeneracy of the many-body system)W is

W(G, Np, α) = [G + (Np − 1)(1 − α)]!

[G − αNp − (1 − α)]!Np!
(1)

whereα = 0 corresponds to bosons,α = 1 to fermions, and 0< α < 1 to particles of
fractional statistics interpolating between the two limits. On the other hand, with use of

the identity 22N = ∑2N
m=0

(
2N

m

)
where

(
2N

m

)
= 2N !/m!(2N − m)!, the logarithm of the

total number of states of ice forN oxygenswithout the ice rule in the thermodynamic limit
would be

ln
2N∑

m=0

(
2N

m

)
≈ ln

(
2N

N

)
≈ ln

(
2N − 1

N

)
. (2)
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In the first line of equation (2), regardingm as the variable number of particles, we retain
only the largest term in the summation in the spirit of the equivalence between the grand
canonical ensemble and the canonical ensemble. (Or, we simply apply Stirling’s formula.)

In the second line,
(

2N−1
N

)
may immediately be interpreted as the degeneracy of many-boson

states whenG (number of one-particle states)= N andNp (the number of particles)= N .
With G = Np = N , the number count for a frozen-in state having no configurational degrees

of freedom is trivially
(

G

Np

)
=

(
N

N

)
= 1, corresponding to the degeneracy ofN fermions

occupyingN states. In other words,G and Np of ice are uniquely determined under the
two ‘boundary conditions’,W(G, Np, 0) = 2N ln 2 and W(G, Np, 1) = 0. Of course,
G = Np = N corresponds to the case where the crystalline ice does not have any deficit or
excess of hydrogen atoms or other defects in bonds. The configurational entropy of real ice
is kN ln 1.507, a value between the two extremes.α for ice is obtained by substitutingG =
Np = N in equation (1) (we neglect 1 compared toN whenever convenient) and comparing
it with the residual entropy,

N ln 1.507≈ (2 − α)N ln(2 − α) − (1 − α)N ln(1 − α) . (3)

We obtainα ≈ 0.867. To recapitulate, two possible sites (A and B) for each hydrogen atom
would be fully available if the presence of other hydrogen atoms in neighbouring bonds
would not restrict the freedom of choice between A and B (just as the presence of other
particles does not restrict the availability of states in boson statistics), but other hydrogen
atoms do impose some statistical constraint (i.e. certain, but not all, states become excluded)
in reality and the measure of the constraint in ice isα = 0.867. In this formulation, the basic
requirement for the fractional exclusion statistics [1] is automatically satisfied:G(= N ) is
finite and extensive, proportional to the size of the condensed matter region becauseN is
definedto be the system size.

We now make a number of observations on the result. Firstly, the ‘particles’ in the
fractional statistics are not necessarilytrue excitationsof any kind. In the present case,
we are counting theground-statedegeneracy of theN -particle system. The distinction is
immaterial because the particles in the degenerate ground states may be regarded as being
created from the null state just as excitations are created from the ground state. When the
reduction of the degeneracy by the chemical constraint is converted into the statistics of
the non-interacting particles of fractionalα, the meaning of the ‘particles’ and ‘one-particle
states’ becomes rather abstract. Suppose we assign A and B to two possible hydrogenic
sites for every bond between oxygens as before. Any hydrogenic configuration of the
whole system can be described by a sequence of A’s and B’s (with 2N of them in total)
representing the sites actually occupied by hydrogens. Then we identify A with a ‘particle’
and B with a ‘wall dividing one state from another’ (so that the number of B’s is equal
to G − 1). The most probable values for the number of A’s and B’s are bothN . We
can easily check that the aforementioned mapping to the fractional exclusion statistics is
accomplished this way. More discussions on the nature of the particles from the viewpoint
of phase statistics will be given later. Secondly, on the question of the rationality ofα,
the configurational entropy in the thermodynamic limit may be calculated by means of a
series expansion and the resultingα need not be a rational number because the limit of
the sequence of rational numbers can be irrational. Thirdly, we can conceive of expanding
the case to more than one species and invoking the mutual statistics by Haldane [1]. Our
attempt to apply the mutual statistics to a mixture of the protons and deuterons (H2−xDxO)
has turned out to be not very meaningful. Another step we can take is to regard the
states of different energies (excited states) as different species following Wu [9]. If, in
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violation of the ice rule, a hydrogen atom on, say, site A were to move towards site B,
a nearest-neighbour pair of H3O+ and HO− would be created at some energy costε. We
could consider the finite-temperature statistics for such excitations. However, state-of-the-art
ab initio pseudopotential calculations using the gradient-corrected density functional theory
[10] indicate that such a single-proton movement to the other side is quite unstable and
should not occur in real ice. There is no experimental evidence for it, either. Furthermore,
the energy costε(& 0.5 eV) is much greater by far than energies of other excitations such as
phonons. Since the low-lying excitations are practically dominant in the finite-temperature
statistics, the study of the high-lying configurational excitations will not be pursued here.
For such a study onmodel systemsrather than real ice, standard methods called the vertex
models are available [11] and the viewpoint of the fractional exclusion may be helpful.

Other possibilities of the fractional exclusion statistics lie in polymers and glasses. It
can be shown that the excluded volume parameterv in polymer solutions [12] is related to
α of the two-dimensional ideal gas through

v = a3(2α − 1) (4)

wherea is the monomer size. Therefore,α is identified with(1 − χ) whereχ is the Flory
interation parameter [12]. On the other hand, macroscopic degeneracy of the ground-state
configurations occurs frequently in spin glasses or any frustrated systems in general and
the fractional exclusion is again conceivable. (Ordinary structural glasses probably do not
have such macroscopic degeneracy.) For instance, the fully-frustrated triangular Ising spin
system exhibits a residual entropy of 0.3383kN and the correspondingα is 0.717. But
there exists a problem of ergodicity here. At low temperatures, the tunnelling time (whether
thermal or quantum mechanical) to other low-energy states is practically infinite and the
very definition of the (equilibrium) statistics among these states becomes ambiguous. This
raises an interesting question why the residual entropy of ice is measured so reproducibly
and coincides with the theoretical calculation so precisely. This seems to be an issue
separate from the fraction exclusion statistics considered so far, but below we give a sketch
of our quantum mechanical calculation on this question beyond the classical configuration-
counting method. In doing so we find that the topological excitation may, in general, play
an important role in the fractional exclusion statistics just as in fractional phase statistics.
More detailed calculations will appear elsewhere [13].

We have stated, in terms of the Born–Oppenheimer energy surface, that there are 1.507N

potential minima of equal well depth corresponding to ice-rule-satisfying configurations.
What we have so far neglected is the kinetic part, namely, the quantum mechanical tunnelling
and the corresponding energy-level splitting. Of course, the tunnelling splitting of energy
levels decreases as the barrier height increases and the states become practically degenerate.
However, if the potential barrier becomes too high, a particular hydrogenic configuration is
frozen-in and other configurations are inaccessible. It was Ma [14] who correctly stated, on
the question of the residual entropy of glasses, that ‘asT → 0, motion stops and entropy also
tends to zero. The third law (of thermodynamics) cannot be violated’. The often-claimed
residual entropy of glasses obtained by integratingCp/T is an artefact of the irreversibility
of the thermal process which causes the inequality∫ T

0
Cp/T dT < 1S(= S(T ) − S(0)) . (5)

This explains why the measured residual entropy of glasses is not unique or reproducible
(sample- and history-dependent). The situation in the crystalline ice, however, is quite
different. Careful experiment always produces the same residual entropy and it coincides
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precisely with the theoretically anticipated value. The crystalline ice, despite its random
hydrogenic configuration, does not, in general, exhibit characteristics of glasses (e.g. glass
transition, hysteresis, or frustration). If we regard (1S − ∫ T

0 Cp/T dT ) as a measure of
irreversibility, this quantity for ice must be negligibly small. In this context, we note Ma
also mentioned in the same reference [14] that the residual entropy can be non-zero if
the ground state is degenerate (as opposed to being frozen as in glasses). The measured
residual entropy of ice is likely to reflect the truly accessible states down to the experimental
temperature (0.2K) and the following development is based on this assumption.

We first pay attention to the fact that the hydrogen tunnelling time must be significantly
shorter than the specific heat measurement time-scale (say, 1000 s) in order for a
macroscopic number of states to be accessible. In fact, there exists a much more stringent
requirement in ice. Since the deuterium ice (D2O) turned out [15] to show the same
residual entropy as the hydrogen ice, the tunnelling time of deuterons is limited by the same
measurement time-scale and the proton tunnelling time is expected to be several orders
of magnitude shorter than that of deuterons. We have tried the state-of-the-artab initio
gradient-corrected pseudopotential total energy calculations similar to [10] for a limited
number of configurations to evaluate this rate. Combined with information available in
the literature, we roughly estimate that the minimum barrier height occurs between the
configuration in figure 1(a) and that in figure 1(b) (equivalently, between (b) and (c), or
between (c) and (a)), and its value is∼2 eV for a simultaneous movement of six hydrogen
atoms (equivalent to∼7.5 kcal/mole of H). Since the zero-point vibration energy (1

2h̄ω) of
the O–H stretching mode is 0.2 eV, the actual barrier is reduced to∼0.12 eV per hydrogen
atom. The overlap integralI across the barrier per hydrogen is∼0.3 and the off-diagonal
matrix elementβ connecting the two configurations is

β ≈ 1
2h̄ω × I 6

≈ 1.46×10−4 eV . (6)

The tunnelling rate goes as the square of the matrix element and turns out to be∼(attempt
frequency)×(0.3)12 ≈ 5×107 s−1. The tunnelling rate of the D2O ice is estimated to be
∼ 7×103 s−1. Simultaneous rotation of six O–H covalent bonds by about 105◦, respectively,
is another way to arrive at configuration (b) from (a). This tunnelling (hindered rotation)
is not ruled out, but seems less frequent because of the longer distance of tunnelling.
Unfortunately, despite all these estimates, nuclear magnetic resonance (NMR) experiments
do not show traces of the hydrogenic motion at low temperatures. Our justification is that,
since six hydrogen atoms move in concert without changing relative positions, they may not
give rise toNMR signals. (In a strict sense, they should not, because they are in the ground
state.) Another (though less likely) possibility is that the tunnelling is faster than the specific
heat, but slower than the NMR time-scale. There do exist experimental indications of the
hydrogenic tunnelling at higher temperatures, near 90 K in the specific heat measurement
[6] and near 250 K in NMR [16]. The lower limit of the potential barrier perdeuteriumfor
the rotational motion was reported to be 0.15 eV [17] (the barrier perhydrogenwould be
smaller), and the activation barrier of 0.125 eV per hydrogen (with 2×10−4 HF added) was
quoted in [16]. If the minimum barrier height is really within 0.15 eV as all these numbers
suggest, the quantum tunnelling rate of the six hydrogen atoms using a very conservative
estimate is still much greater than the specific heat measuring rate, supporting our claim
that there exist a collective quantum tunnelling of six hydrogen atoms.

It is ironic, however, that the very existence of quantum tunnelling undermines the finite
residual entropy. In the presence of quantum tunnelling between potential minima, a new
non-degenerate ground state is formed by the linear combination of these configurations
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with equal coefficients and the tunnelling splitting of energy levels follows. If we consider
tunnelling among three configurations in figure 1 only and use the off-diagonal matrix
elementβ evaluated previously, the non-degenerate ground-state energy would be−2β and
the doubly-degenerate excited-state energyβ (with respect to the energy of the state in a
single potential well). Therefore, the energy splitting should be 3β ≈ 0.44 meV, much
too great to pass undetected in the specific heat measurement at 0.2 K. In other words,
accessibility to many potential minima does not explain the finite residual entropy.

To overcome this dilemma, we make a rather unusual proposal, namely, that there appear
a Berry’s phase [18] in ice. A crucial point here is that the ice consists not only of nuclei but
also of electrons. As protons move from one configuration to another, electrons follow the
protons’ motion and the many-electron wavefunction also changes. As the simplest example
occurring in ice, we can investigate how the electronic state evolves as the hydrogenic
configuration changes from figure 1(a) to (b) to (c) and back to (a) in sequence. It has
been proved that the electronic state (the fast variable) picks up Berry’s phaseγ = π if
the trajectory of the ionic configuration (the slow variable) encloses a point at which the
electronic states are doubly degenerate. Such phenomena are known to occur at defects in
crystals [19] or in Na3 molecules [20]. In the present case, the spatially extended nature
of the crystalline ice with aperiodic hydrogen configurations and the too many structural
degrees of freedom prohibit us from drawing definite conclusions yet, although we have
some positive calculational results†.

But once we make the conjecture that Berry’s phase emerges from the states made out
of the three configurations in figure 1, the ground state becomes doubly degenerate [19, 20]
as in the spin-12 system with the degenerate eigenvalue of−β. One structural unit made
of eight oxygen atoms shown in figure 1 can be imbedded without overlap for every 12
oxygen atoms in the hexagonal lattice. Thus the degeneracy forN oxygen atoms coming
from this kind of Berry’s phase is 2N/12, accounting for∼14% of the residual entropy
of ice. This number is nearly tripled as we include the translation of this structural unit
by the Bravais lattice vectors, and the degrees of freedom of hydrogen atoms not residing
on this unit also increase the number. On the other hand, by including overlap effects and
Berry’s phase covering a larger structural unit, we anticipate that some energy splitting takes
place. This splitting, however, is a next-order effect and manifests itself as the reduction
of the residual entropy only at much lower temperatures. 0.01 K. (At such a low-energy
scale, there may be other sources that limit the quantum coherence time.) Therefore, the
finite residual entropy and the subsequent violation of the third law of thermodynamics
in the practical sense are expected based on the existence of Berry’s phase. Notice that
Berry’s phase considered above is equivalent to the presence of a thin solenoid carrying half
the magnetic flux quantum threaded through the loop (still not violating the time-reversal
symmetry). The wavefunctions, though representing the lowest-energy states, acquire the
‘pseudo’rotational angular momentuml = 1

2 (rather than 0) because of the unusual boundary
condition imposed by Berry’s phase and look liketopological excitationssimilar to other
known cases of the fractional statistics [1–4, 9]. We want to add that topological singularity
forms lines or rings in the present case and is equivalent to the conventional point singularity
in two-dimensions. The phase change for an individual cyclic motion of a local hydrogenic
configuration is either 0 orπ (which is not fractional!); the phase change can be fractional
(απ ) only after statistical averaging.

In conclusion, we have shown that the residual entropy of ice may be interpreted

† We have found a set of hydrogenic configurations giving rise to quantum mechanical energy degeneracy for
the oxygen cluster in figure 1, which is a necessary (but still not sufficient) condition for the existence of Berry’s
phase.
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as a realization of the fractional exclusion statistics in three spatial dimensions. The
experimental observation of the residual entropy suggests that a macroscopic number of
degenerate configurations may actually be accessible even at low temperatures through
quantum tunnelling. The occurrence of quantum tunnelling, however, normally causes
an appreciable energy level splitting which would, in turn, make the residual entropy
vanish, leaving us in a paradoxical situation. We propose that the emergence of Berry’s
phase through the topologically non-trivial, collective tunnelling of hydrogen atoms can
resolve this puzzle and explain the finite residual entropy. This proposal indicates that the
topological excitation may be an essential feature of the fractional exclusion statistics even
in the case of ice where the chemical constraint is the source of such an exclusion.

This work was supported by the BSRI 95-2420 of the Ministry of Education, the SNU-
Daewoo Research Fund 94-04-1043, and the Korea Science and Engineering Foundation
through the SRC Programme.
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